
Evaluating what has been 
learned

Lecture 03.01



Intuition → numeric evaluation

• How to measure the quality of the classifier

• How to quantify this measure

• How to compare the quality of two different classifiers



Natural performance measure: 
error rate 

• Success: instance’s class is predicted correctly

• Error: instance’s class is predicted incorrectly

• Error rate: proportion of errors made over the whole set of 
test instances



Resubstitution (training) error

• Training error - error rate obtained from training data

• Example:

Error rate for different number of leaf nodes in a decision tree

Training error is (hopelessly) optimistic!
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Error for a test set

• Test set: independent instances that played no part in 
formation of classifier

• Assumption: both training data and test data are 
representative samples of the underlying problem

• Generally, the larger the training data, the better the classifier

• The larger the test data the more accurate the error estimate



Where to get the test set?

• Simple solution that can be used if lots of (labeled) data is 
available:

• Split data into training and test set

• However: (labeled) data is usually limited

• More sophisticated techniques need to be used

• We need to make the most from the available data



Holdout
• Holdout procedure: method of splitting original data into 

training and test set

• Dilemma: ideally both training set and test set should be 
large!

• The holdout method reserves a certain amount for testing and 
uses the remainder for training

• Usually: one third for testing, the rest for training

• Problem: the samples might not be representative

• Example: one class might be missing in the test data

• Advanced version uses stratification

• Ensures that each class is represented with approximately 
equal proportions in both subsets

https://en.wikipedia.org/wiki/Stratified_sampling


Repeated holdout
• Holdout estimate can be made more reliable by repeating the 

process with different subsamples

• In each iteration, a certain proportion is randomly selected 
for training (possibly with stratification)

• The error rates on the different iterations are averaged to 
yield an overall error rate

• This is called the repeated holdout method

• Still not optimum: different test sets overlap

• Can we prevent overlapping?



Cross-validation

• Cross-validation avoids overlapping test sets

• First step: split data into k subsets of equal size

• Second step: use each subset in turn for testing, the 
remainder for training

• Often the subsets are stratified before the cross-validation is 
performed

• The error estimates are averaged to yield an overall error 
estimate

• Standard method: stratified 10-fold cross-validation

k-fold 
cross-

validation



Leave-One-Out cross-validation

• Leave-One-Out: an extreme form of cross-validation

• Set number of folds to number of training instances:

for n training instances, build classifier n times using n-1 
instances for training, and record the error rate of the left-
out instance

✓ Makes best use of data

✓ Involves no random subsampling 

❖ But, computationally expensive



Leave-One-Out-CV and stratification

❖ In the Leave-One-Out-CV: stratification is not possible

It guarantees a non-stratified sample because there is only 
one instance in the test set!

• Extreme example: completely random dataset split equally into  
two classes

• The classifier predicts majority class

• 50% accuracy on fresh data 

• Leave-One-Out-CV estimate gives 100% error!



Bootstrap

• Cross-Validation uses sampling without replacement

– The same instance, once selected, can not be selected again 
for a particular training/test set

• The bootstrap uses sampling with replacement to form the 
training set:

• Randomly sample a dataset of n instances n times with 
replacement to form a new dataset of n instances

• Use this data as the training set

• Use the instances from the original dataset that don’t occur in 
the new training set for testing

• Also called the 0.632 bootstrap (Why?)



The 0.632 bootstrap

• A particular instance has a probability of 1–1/n of not being 
picked

• Thus, its probability of ending up in the test data is:

• This means the training data will contain approximately 
63.2% of the instances
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Estimating error
with the bootstrap

• The error estimate on the test data will be very pessimistic: 
trained on just ~63% of the instances

• Therefore, combine it with the optimistic training error:

The training error gets less weight than the error on the test data

• Repeat process several times with different replacement samples; 
average the results

• This is the best way of estimating performance for very small 
datasets
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ESTIMATING THE MEAN OF 
SUCCESS/ERROR RATE 
WITH CONFIDENCE

Statistics rules!



Predicting true performance
• Assume the estimated success rate is 75%. How close is this to the 

true success rate on an unknown future population?

• Depends on the amount of test data

• Prediction is just like tossing a (biased!) coin

• “Head” is a “success”, “tail” is an “error”

• And we want to approximate the real probability p(“head”) 
from a set of experiments

• In statistics, a succession of independent events like this is called a 
Bernoulli process

• Statistical theory provides us with confidence intervals for the 
true underlying proportion of probabilities



Predicting performance interval
• We can say: p – probability of success of a classifier – lies within a certain 

specified interval with a certain specified confidence

• Example: S=750 successes in N=1000 trials

– Estimated success rate: 75%

– How close is this to the true success rate p?

• Answer: with 80% confidence p[73.2,76.7]

• Another example: S=75 and N=100

– Estimated success rate: 75%

– With 80% confidence p[69.1,80.1]

• I.e. the probability that p[69.1,80.1] is 0.8.

• The bigger the N – the more precise we are in our evaluation, i.e. the 
surrounding interval is smaller.
– Above, for N=100 we were less confident than for N=1000.



Predicting performance interval

• How do we compute the predicted interval of classifier’s 
success for a certain level of confidence?

• There is a large unknown number of samples to be classified 
in the future 

• Out of this whole population we tested classifier only on N 
instances (N-the size of our test set)



• Let Y be the random variable with possible values 

1 for success and 

0 for error. 

• Let probability of success be p. 

• Then probability of error is q=1-p.

• What’s the mean of the Y distribution?

μ=1*p + 0*q = p

• What’s the standard deviation of Y distribution?

σ2=(1-p)2*p + (0-p)2*q

= q2*p+p2*q

= pq(q+p) 

= pq(1- p + p)

=pq

Success as a random variable

0 1

q
p

μ =p

True distribution of 
classification success

We do not know µ=p!



Distribution of sampling means

0 1

q
p

μ =p

True probability distribution 
of Y in the entire population 

Distribution of sampling 
averages ҧ𝑥 for N=10

We can take a random sample of size N from the 
entire population of Y values. The average of this 
one sample,      , might be close to the real mean 
µ, and might be not. 
However, if we perform many random samplings, 
and plot the average of each sampling, the 
sampling averages would have normal distribution

𝑥



Distribution of sampling means

0 1

q
p

μ =p

True distribution of 
classification success

μ
ҧ𝑥
= μ=p

Distribution of 
sampling averages ҧ𝑥
for N=10

σ
ҧ𝑥

Distribution of 
sampling averages ҧ𝑥
for N=100

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

Given large enough number of samplings, the mean of sampling averages will 
approach the real mean of the entire population



Standard deviation of sampling means
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True distribution of 
classification success
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Distribution of 
sampling averages ҧ𝑥
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The standard deviation will be smaller if the size of each sample is larger – the larger is each 
sample, the less is the error of estimating the real mean from this sample



Standard deviation of sampling means
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True distribution of 
classification success
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Distribution of 
sampling averages ҧ𝑥
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Distribution of 
sampling averages ҧ𝑥
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The dots, where each dot represents a mean of a particular sample, 
will fall closer to the real mean, if the size of each sample is large



If you take N=100 samples, you are 
much closer to the real mean than if 
you take N=2.

Turns out that: σ2
ത𝑥
= σ2/N

Variance of the sampling mean 
distribution is inversely proportional 
to the size of the sample N

Formula for standard deviation of the 
distribution of sampling means
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Computing performance interval. 
Example

• How do we compute the predicted interval of classifier’s success 
for a certain level of confidence?

• We sampled 100 instances: 75 correctly classified.

• Sample mean:  

ҧ𝑥=(1*75+0*25)/100=0.75

• Sample variance:

S2=[ 75*(1-0.75)^2+25*(0-0.75)^2 ]/ (N-1)=0.19

Adjustor – so we do not 
underestimate sample 
variance



Computing performance interval. 
Example

• How do we compute the predicted interval of classifier’s success 
for a certain level of confidence?

• We sampled 100 instances: 75 correctly classified.

• Sample mean:  

ഥ𝒙=(1*75+0*25)/100=0.75

• Sample variance:

s2=[ 75*(1-0.75)^2+25*(0-0.75)^2 ]/ (N-1)=0.19

• Sample standard deviation:

s=sqrt(0.19)=0.435



Computing performance interval. 
Example

• N=100 instances: 75 correctly classified.

• Sample standard deviation: s=0.435

• We estimate the true standard deviation 
σ by sample standard deviation s

• Now we can estimate one standard 
deviation of the distribution of sampling 
means: 

σ ത𝒙
= s/sqrt(N)=0.435/10=0.0435

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥



Computing performance interval. 
Example

σ ത𝒙
= 0.0435

How many such standard deviations away 
from the samplings mean we need to be to 
have 80% confidence that any random 
sample mean is within this interval? 

In other words: how many standard 
deviations around real mean μ we need to 
be to have 80% chance that any random 
sample of size N is within this interval?

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

80 %

Because the mean of the distribution of the sampling 
means is equal to the real mean µ,  answering the 
previous question will answer: how big an interval 
should we allocate around µ, such that any random 
sampling of size N will have its mean within this 
interval



Computing performance interval. 
Example

σ ത𝒙
= 0.0435

How many such standard deviations away 
from the samplings mean we need to be to 
have 80% confidence that any random 
sample mean is within this interval? 

In other words: how many standard 
deviations around real mean μ we need to 
be to have 80% chance that any random 
sample of size N is within this interval?

We want the upper part (above mean) to be 
40%, since normal distribution is symmetric. 

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

40 %

Because the mean of the distribution of the sampling 
means is equal to the real mean µ,  answering the 
previous question will answer: how big an interval 
should we allocate around µ, such that any random 
sampling of size N will have its mean within this 
interval



Computing performance interval. 
Example

σ ത𝒙
= 0.0435

How many such standard deviations away 
from the samplings mean we need to be to 
have 80% confidence that any random 
sample mean is within this interval? 

In other words: how many standard 
deviations around real mean μ we need to 
be to have 80% chance that any random 
sample of size N is within this interval?

The probability of the variable to be less 
than the upper mark is 40+50=90%

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

90 %

?

Because the mean of the distribution of the sampling 
means is equal to the real mean µ,  answering the 
previous question will answer: how big an interval 
should we allocate around µ, such that any random 
sampling of size N will have its mean within this 
interval



Computing performance interval. 
Example

σ ത𝒙
= 0.0435

The probability of the variable to be less than the 
upper mark is 40+50=90%

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

90 %

?

z 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .500 .504 .508 .512 .516 .520 .524 .528 .532 .536

0.1 .540 .544 .548 .552 .556 .560 .564 .568 .571 .575

0.2 .580 .583 .587 .591 .595 .599 .603 .606 .610 .614

0.3 .618 .622 .626 .630 .633 .637 .641 .644 .648 .652

0.4 .655 .659 .663 .666 .670 .674 .677 .681 .684 .688

0.5 .692 .695 .699 .702 .705 .709 .712 .716 .719 .722

0.6 .726 .729 .732 .736 .740 .742 .745 .749 .752 .755

0.7 .758 .761 .764 .767 .770 .773 .776 .779 .782 .785

0.8 .788 .791 .794 .797 .800 .802 .805 .808 .811 .813

0.9 .816 .819 .821 .824 .826 .829 .832 .834 .837 .839

1.0 .841 .844 .846 .849 .851 .853 .855 .858 .850 .862

1.1 .864 .867 .869 .871 .873 .875 .877 .879 .881 .883

1.2 .885 .887 .889 .891 .893 .894 .896 .898 .900 .902

1.3 .903 .905 .907 .908 .910 .912 .913 .915 .916 .918

Z-table

How many 
standard 
deviations 
above the 
mean

Cumulative 
probability up to 
this point



Computing performance interval. 
Example

σ ത𝒙
= 0.0435

Our sample mean is less than real mean plus 1.28 
standard deviations with probability 90%

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

90 %

?

z 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .500 .504 .508 .512 .516 .520 .524 .528 .532 .536

0.1 .540 .544 .548 .552 .556 .560 .564 .568 .571 .575

0.2 .580 .583 .587 .591 .595 .599 .603 .606 .610 .614

0.3 .618 .622 .626 .630 .633 .637 .641 .644 .648 .652

0.4 .655 .659 .663 .666 .670 .674 .677 .681 .684 .688

0.5 .692 .695 .699 .702 .705 .709 .712 .716 .719 .722

0.6 .726 .729 .732 .736 .740 .742 .745 .749 .752 .755

0.7 .758 .761 .764 .767 .770 .773 .776 .779 .782 .785

0.8 .788 .791 .794 .797 .800 .802 .805 .808 .811 .813

0.9 .816 .819 .821 .824 .826 .829 .832 .834 .837 .839

1.0 .841 .844 .846 .849 .851 .853 .855 .858 .850 .862

1.1 .864 .867 .869 .871 .873 .875 .877 .879 .881 .883

1.2 .885 .887 .889 .891 .893 .894 .896 .898 .900 .902

1.3 .903 .905 .907 .908 .910 .912 .913 .915 .916 .918

Z-table



Computing performance interval. 
Example

σ ത𝒙
= 0.0435

Our sample mean is less than real mean plus 1.28 
standard deviations with probability 90%

Our sample mean ҧ𝑥=0.75 falls within 1.28 σ ത𝑥
from 

the real mean μ=p 

or

the real mean μ=p is within 1.28 σ ത𝑥
from the sample 

mean ҧ𝑥=0.75.

The real mean μ=p is between:

[ ҧ𝑥 - 1.28 σ ത𝑥
, ҧ𝑥 - 1.28 σ ത𝑥

]

[0.75-1.28*0.0435, 0.75+1.28*0.0435]

[0.69, 0.805]

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

90 %

?



Computing performance interval. 
Result

The real mean μ=p is between:

[0.69, 0.805] with the probability 80%

We can say that with confidence 80% the 
correctness of our classifier on real datasets 
is between 69% and 80.5%

Confidence – is a level of reliability of 
estimating the population parameter (in 
this case, the mean of the real population, 
μ=p) from the sample data.

We may also say that the result [0.69, 
0.805] is statistically significant with 
significance level 10%: 

significance=100%-confidence

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

μ
ҧ𝑥
= μ=p

σ
ҧ𝑥

80 %



Computing confidence interval of 
classifier’s success rate in practice

• Estimate real standard deviation by computing 
sample standard deviation:

σ2≈Σi
N(meanX-xi)

2/(N-1)

• For confidence interval C, find z-value for C/2+0.5 
(from the z-table)

• Real µ=p is within:
C/2+0.5

z-value

N
zxp


=



COMPARING PERFORMANCE OF 
TWO CLASSIFIERS

More statistics!



Comparing performance 
of learning schemes

• Which of two learning schemes perform better?

• Note: this is domain-dependent!

• Obvious way: compare error (success) rate on different test 
sets (for example, for different folds of cross-validation)

• Problem: variance in estimate



Statistical test for significant difference

• Question: are the means of two samples significantly
different?

• In our case the samples are cross-validation accuracy for 
different folds from the same dataset

• The same Cross-Validation is applied twice: once for classifier 
A and once for classifier B



Probability distribution of sampling 
means

• Let mX denote the mean of the probability of success 
of classifier A, and mY – the mean of the probability 
of success of classifier B

• We already know that the means of multiple 
samplings for each classifier are normally distributed 
around the real means  µA and µB of classifier’s 
success rate for the entire population



Probability distribution of sample 
mean differences

• We know how to estimate the intervals for the real means µA

and µB for a certain confidence level

• Suppose, µA=70±10 and µB=60±10

• Which one is better?

60 70

Real means are somewhere inside these intervals. 
Maybe they are just the same?



Probability distribution of sample 
mean differences

• If we take k samplings, and for each 
sample compute the difference of the 
means dm, then for multiple samplings 
the distribution of the mean differences 
approaches the Student’s distribution T
with k-2 degrees of freedom

Student’s distribution (red) 
for 2 degrees of freedom 

compared to normal 
distribution (blue)



Standard deviation of Student’s 
distribution

• Student’s distribution is very similar to the normal distribution

• Not surprisingly:

– The experimentally estimated mean represents a mean µd

of a real difference between X and Y for the entire 
population 

– The real standard deviation σd is inversely proportional to 
the sample size N:

σd
2= sd

2/N



Null-hypothesis

• We formulate our statistical hypothesis about the true value 
of µd:

µd=0

Next, we select the level of significance (or confidence), and we 
find within how many standard deviations from the mean 
µd=0 should be sample mean difference md of any random 
sampling in order to be still considered 0-difference (no 
statistically significant difference) 



T-table

One 
Sided

75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%

Two 
Sided

50% 60% 70% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9%

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

Degrees 
of 

freedom

How many standard 
deviations from the 

mean – t-value

75%

t-value

50%

t-value

0 0
One-sided confidence Two-sided confidence



T-table
75%

t-value

50%

t-value

0 0
One-sided confidence Two-sided confidence

• One-sided test is used if we only interested if our difference is 
significantly greater than zero, or significantly smaller than 
zero, but not both

• Two-sided – if we are interested if our difference is 
significantly different from zero – both greater and smaller

α=25%
α=50%



T-test
50%

t-value

0
Two-sided confidence

• If the mean of differences of two samples is within the 
interval, then our Null-hypothesis is correct – there is no 
significant difference between two classifiers (for a given 
significance level)

• If the mean of differences is outside the interval, then the 
difference is significant (not by random chance), and we select 
the classifier with higher on average success rate



Comparing performance of two 
classifiers in practice

• Perform k classifications on each of k datasets using classifier A and 
classifier B in turn

• Compute difference of classification means for each dataset

• Find mean (average) and variance s of differences

• Fix a significance level α. Compute confidence for two-sided T-distribution: 
C=1.00 – α. Find t-value from the T-table for confidence C and k-2 degrees 
of freedom

• Find interval for the hypothesis µd=0:

• If the mean of differences is greater than             , then the first classifier is 
significantly better, 

• if the mean of differences is less than           , then the second classifier is 
significantly better

N
td


 = 0

N
t


+

N
t


−



Example. Input
• We have compared two classifiers through cross-validation on 

10 different datasets (folds). 

• The success rates are:

Dataset         Classifier A Classifier B Difference

1 89.4 89.8 -.4

2 90.2 90.6 -.4

3 87.7 88.2 -.5

4 90.3 90.9 -.6

5 91.2 91.7 -.5

6 89.4 89.8 -.4

7 90.2 90.6 -.4

8 87.7 88.3 -.5

9 90.3 90.9 -.6

10 91.2 91.7 -.5



Example. Mean and variance of differences

• md = -0.48

• sd = 0.0789

0249.0
10

0789.0
===

k

sd
d



Example. T-interval
σd=0.0249
The critical value of t for a two-tailed statistical test,  = 10% 

(c=90%) and k-2=8 degrees of freedom is: 1.86

The average difference should be outside the interval
[-1.86*0.0249, 1.86*0.0249] in order to be significant

One 
Sided

75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%

Two 
Sided

50% 60% 70% 80% 90% 95% 98% 99% 99.5% 99.8% 99.9%

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587



Example. Solution
Significance  = 10%:

The average difference should be outside interval
[-0.046, 0.046] in order to be significant

Our average difference is  -0.48. The second classifier is 
significantly better than the first



The Inadequacy of success rates

• As the class distribution becomes more skewed, evaluation based on 
success rate breaks down. 

– Consider a dataset where the classes appear in a 999:1 ratio. 

– A simple rule, which classifies every instance as the majority  class, 
gives a 99.9% accuracy – no further improvement is needed!

• Evaluation by classification success rate also assumes equal error costs---
that a false positive error is equivalent to a false negative error.

– In the real world this is rarely the case, because classifications lead to 
actions which have consequences, sometimes grave.


